Oracle: Explaination of Oracle undocumented parameters

Last Updated on 01-JUL-97
This is internal only folks.
select ksppinm from x$ksppi

where substr(ksppinm,1,1) = '_';

The following is a list of undocumented parameters.

1. _db_block_cache_protect

On VMS, the DB_BLOCK_CACHE_PROTECT mechanism has been made much

faster. During normal use, having it turned on shouldn't be

noticeable (the degradation is less than 1%). Developers who

link non-share will need PSWAPM privilege to use this feature.

When DB_BLOCK_CACHE_PROTECT is turned on, developers may either

use the VMS mailboxes with the M (MEMORY_LOG) command

or they may just examine the ring buffer in the PGA (index

SMPREI_, array SMPREB_) to determine what buffer requests have

been made recently.

DB_BLOCK_CACHE_PROTECT will prevent certain corruption from getting to

disk; although, it may crash the foreground of the instance. It will help

catch stray writes in the cache. When you try to write past the buffer

size in the sga, it will fail first with a stack violation.

It seems that the db_block_cache_protect has a significant performance

overhead. Preliminary testing shows that it has considerable overhead

(a single update took twice as long with the parameter set to TRUE).

2. _db_block_compute_checksums

There is another new init.ora parameter, DB_BLOCK_COMPUTE_CHECKSUMS, that

controls whether a checksum is put into every block before the block is

written to disk. The default is FALSE. A block read validates an

exiting checksum whether or not this option is enabled. A block is marked

as corrupt if a checksum fails.

It helps determine corruption due to hardware problems. The incarnation

number and the sequence number are added to the end of the block to help

catch corruption.

If the problem (corruption) is in the middle of the block

this test will not detect it. To detect this problem a checksum may be

generated in the block header before every write and verified on every

read.

3. _db_block_hash_buckets= "Number of database block hash buckets"

The number of hash buckets is

a) by default to be set to a prime number;

b) coerced to a prime if there is an init.ora parameter setting.

The value, if not a prime number > 2, is rounded up to the next highest

prime.

I would tend not to change it unless there is latch contention on the hash

chains. raising it to equal the number of buffers would clearly remove any

contention (basically, this is just saying that each buffer lives on its

own

hash chain). Having it set too small would mean that we might have to

scan

over lots of buffers to find the one we want. I think the default is to

make it 1/4 of the total number of buffers

4. _db_block_multiple_hashchain_latches

"Use one latch per hash chain"

5. _db_handles

"System-wide simultaneous buffer operations"

6. _db_handles_cached

"Buffer handles cached each process"

7. _wait_for_sync

" Wait for sync on commit "

Wait_for_sync is an oracle generic parameter which, when set to

false, will allow the system to complete commits without waiting

for the redo-log buffer flushes to complete.

8. _db_block_max_scan_cnt="Maximum number of buffers to inspect when

looking for free buffer"

DB_BLOCK_MAX_SCAN_CNT is an init.ora parameter which specifies

the number of unavailable buffers a process should scan before signaling

DBWR to write dirty buffers from the buffer cache to disk.

9. _db_writer_scan_depth

"Number of LRU buffers for dbwr to scan when looking for dirty buffers"

10a. _db_writer_scan_depth_increment

"Add to dbwr scan depth when dbwr is behind"

10b. _db_writer_scan_depth_decrement

Subtract from dbwr scan depth when dbwr is working too hard

11. _db_large_dirty_queue

"Number of buffers which force dirty queue to be written

12. _db_block_write_batch

Number of blocks to group in each DB Writer IO

specifies the no of blocks to be written to the disk in one write

operation.

Should be increased till write wait time and write complete waits starts

to

increase.

DBWR Free Low is the number of times DBWR is invoked because a user

process found at least DB_BLOCK_WRITE_BATCH/2 buffers on the dirty list.

This parameter specifies the number of blocks which should be written to

disk at one time.

This parameter should only be increased until the statistics

Write Complete Waits and Write Wait Time show growth. Write Complete

Waits is the number of times a process waited for DBWR

to write a current block before making a change to a buffer.

13. _db_block_cache_clone

"Always clone data blocks on get (for debugging)"

This parameter setting has a significantly adverse affect on performance

and we were told to run without it.

14. _controlfile_enqueue_timeout

/* use parameter value (default is 900) */

/* System Parameter: control file enqueue timeout in seconds */

15. _db_no_mount_lock

add hidden parameter to not acquire mount lock

If hidden int.ora parameter _db_no_mount_lock is set to TRUE

then no mount locks are acquired when the the database is mounted

exlusive. This allows two databases with the same name to be

simultaneously mounted. Note that this circumvents the mechanism

to prevent two simultaneous startups of the same database, and is

thus a dangerous parameter to set. This only affects ports that

ar compiled with the SYS_DFS option enabled (i.e. VMS only).

It does not get a mount lock on the database name during startup.

This allows 2 instances with the same name to run on one machine

16. _log_checkpoint_recovery_check

Check redo log after checkpoints.

Add debugging code to check the red log after a checkpoint. This

code is intended to help find a problm that is generating ora-600 [3020]

during recovery. This code is enabed with a new init.ora parameter:

_log_checkpoint_recovery_check=XXX, where XXX is the number of redo

blocks to check. This is called in LGWR after every checkpoint. If the

init.ora parameter "_log_checkpoint_recovery_check" is zero (default)

it does nothing. If it is a positive value then that many blocks of

redo are scanned to see that the data file blocks on disk could be

recovered if there was an immediate crash. This code was introduced

to catch an elusive bug that results in OERI(3020) errors

occasionally during crash recovery.

17. _switch_on_stuck_recovery

REDO GENERATION HAS BEEN CHANGED SO THAT WE SHOULD NEVER ENCOUNTER

A CHANGE IN THE FUTURE OF THE BLOCK. APPLYING REDO IN SCN ORDER NOW

INSURES THAT CHANGES ARE APPLIED IN INCARNATION/SEQUENCE # ORDER. THERE

IS A LOT OF CODE IN RECOVERY THAT IS NO LONGER NEEDED BECAUSE OF THIS

CHANGE. THIS INCLUDES THE CODE TO BACKUP AND RESCAN AFTER REPAIRING

CORRUPTIONS. THE CODE IS BEING LEFT IN TO AVOID LARGE CHANGES JUST BEFORE

V7.0 PRODUCTION RELEASE. THE FOLLOWING WILL INSURE THE UNNEEDED CODE

IS NEVER EXECUTED UNLESS REDO WAS GENERATED BY A BETA RELEASE OR THE

SECRET

INIT.ORA PARAMETER _SWITCH_ON_STUCK_RECOVERY IS SET TO TRUE.

Check redo Log contents after checkpoint. This is called in LGWR after

every checkpoint. If this parameter is zero (default) it does nothing.

If it is a positive value then that many blocks of redo are scanned to see

that the data file blocks on disk could be recovered if there was an

immediate crash. This code was introduced to catch an elusive bug that

results in OERI(3020) errors occasionally during crash recovery.

Checkpoint recovery check: this is the number of redo blocks that

kcracl will verify after every LGWR generated checkpoint. Defaults to zero

for no checking. When opening the named offline log for redo application

and to recalculate future change thread switching this parameter is used.

18. _log_io_size=redo log IO chunk size (blocks/write)

/* System Parameter: IO chunk size */

1. that the value is o/s dependent.

2. if left at 0, the value will be automatically determined for each log

file.

19. _log_buffers_debug

/* debugging: fill redo buffers with [well known] junk after writes */

"debug redo buffers (slows things down)"

20. _log_debug_multi_instance

/* debugging : pretend multi-instance */

"debug redo multi instance code"

21. _log_entry_prebuild_threshold

/* redo entry pre-build threshold */

/* this is a bad idea for a uniprocessor , and is only helpful for a

multiprocessor when there is latch contention */

LOG_ENTRY_PREBUILD_THRESHOLD determines the maximum size of a redo entry

to prebuild before the copy to the log buffer. Increasing this parameter

reduces the time that the redo copy latch is held. This parameter should

not be modified if it is a single processor environment or there will be

memory contention.

22. _disable_logging

If this is true, redo records will not be generated -- no recovery is

possible

if the instance crashes. It is mainly used for getting good benchmarking

results.

Default is false

23. _log_blocks_during_backup

TRUE value implies before any change is made to a db_block in the buffer

cache, a *complete image* of the block is copied to the redo

redo log. (This explains why excessive redo would be generated for

datafiles excessive redo would be generated for datafiles in hot backup

mode.) There is a new init.ora parameter, LOG_BLOCKS_DURING_BACKUP,

that controls whether block images ar written to the redo log during

hot backup.

Default is TRUE for VM, but port specific with the default defined in

sparams.h. This may beset to FALSE if the Oracle block size equals

the O/S physical sector sie or if it is otherwise ensured that hot backup

reads consistent versios of blocks even if those blocks are being written

at the time. Put anther way, this may be set to FALSE on machines that

can guarantee the aomicity of a single block I/O request.

Default is true

Problem is due to split blocks.

24. _allow_resetlogs_corruption

Added new secret init.ora parameter to override error 1138.

When set to TRUE the

resetlogs option will be allowed even if there are hot backups that need

mor redo applied. Unless you are certain that absolutely all redo,

includig

the online logs, has been applied, then a full export and import mst be

done to insure the database is internally consistant.

from 6.0 code

/* if we crashed/shutdown during a hot backup it is over now and we

** are no longer logging blocks. If they did a manual recovery

** followed by a NORESETLOGS then the hot backup recovery flag can

** be cleared. The hot backup recovery flag may alsoneed clearing

** if RESETLOGS was allowed because of _allow_resetlogs_corruption

** parameter. */

from the c file kcv.c 7.0 code

/* if the resetlogs option is in effect we save the highest checkpoint

** scn that we see, to be used as the incomplete recovery scn. It only

** gets used if a resetlogs is done without any recovery. Only backup

** control file recovery will be allowed and it always rewrites the

** incomplete recovery scn. We use the highest scn we can find so that

** new resetlogs scn will be greater than anything in the database.

** This may not be strictly true if the user sets

** _allow_resetlogs_corruption, and there is a fuzzy file. Note that

** since resetlogs does not look at the log file headers, datafile

** checkpoints are all we have to look at.

25. _reuse_index_loop

"number of blocks being examine for index block reuse"

/* secret system parameter to control how agressive we should walk the

free

** list when attempting to reuse block - default is 5.

** Set to 0 for fast index operation which is susceptible to growth,

** Set to > 5 for slower index op but more agressive in reusing blocks */

Controls the amount of work done when looking for a block to reusse

for n index entry. The value determines the number of blocks to

check on the freelist when looking for a reusable block.

26. _mts_load_constants

/* hidden init.ora to set server load balancing constants */

/* fill in load balancing parameters (from _mts_load_constants) */

* PID Controller - calculate control on number of servers using:

* control = Kp * err + Kd * delta(err) + Ki * sum(err)

* where Kp = proportional, Kd = derivative constant, Ki = integral

constant

* Kp,Kd,Ki can be changed with the hidden parameter _mts_load_constants

* in order to tune the system as desired.

This values should only be changed after gathering enough information to

determine that the mts is not optimal.

27. _mts_fastpath

/* hidden init.ora to enable dispatcher fastpath */

default is false

* Return TRUE if the system should implement the dispatcher network

* fastpath. When enabled, the dispatcher fastpath causes network i/o

* to be buffered and only flushed when absolutely necessary. When not

* enabled, flushes will occur for every dirty virtual circuit buffer.

*** The following parameters are from the Kernel SQL Library manager

28. _kgl_multi_instance_lock

Only for debugging. all the _kgl_multi_instance_xxxx

"whether KGL to support multi-instance locks"

Default is 0

29. _kgl_multi_instance_pin

"whether KGL to support multi-instance pins"

Default is 0.

30. _kgl_multi_instance_invalidation

"whether KGL to support multi-instance invalidations"

Default is 0.

31. _row_cache_instance_locks

Kernel SQL Row cache management component, number of row cache instance

locks

default is 100

32. _row_cache_buffer_size

"size of row cache circular buffer"

default is 200

33. _messages

" message queue resources - dependent on # processes "

The asynchronous message mechanism allows processes to send

messages to each other. A process may send a message to a

specified other process (always without waiting for a reply),

may wait for a message to arrive on its queue, and may obtain

the next message. Messages sent to detached processes are

reliably delivered. Messages sent to foreground processes are

reliably delivered as long as the process is active. The

mechanism also permits sending of a simple "reply", which is a

one-byte message without queuing. It should normally be used

to reply to asynchronous messages, and this is a safer

technique than regular messages for responding to foreground

processes. This mechanism is not used in single process mode.

34. _cpu_count

ksb - Kernel Service Background processes

"number of cpu's for this instance"

CPU_COUNT has to be set on some platforms in order for Oracle to take

advantage of multi-processor system, on others it does not have effect on

performance since load balancing between processors is handled by the o/s.

35. _debug_sga

/* Debug SGA, don't make the SGA a global section so we can set

watchpoints

36. _enqueue_locks

ksq1 - Kernal Service enQueues (1)

Definitions for enqueues client objects, "locks for managed enqueues"

37. _enqueue_hash

"enqueue hash table length"

38. _enqueue_debug_multi_instance

"debug enqueue multi instance"

KST is a trace facility used for "realtime" tracing of events. Below

are defined KST macros that will enable the tracing of such things as

latch operations, memory assignments, etc. Tracing is done to a per

process circular buffer stored in the SGA. Access to these buffers

is via fixed tables. Tracing is enabled for classes of events,

particular events, and ranges of events.

The tracing state may be dynamically changed with the following syntax

"ALTER TRACING"

- "ON"

- Processes begin logging events using the current enabled events

- "OFF"

- Processes stop tracing

- "ENABLE" <event_string>

- Add in the events indicated in <event_string> to those which are

being traced.

- "DISABLE" <event_string>

- No longer trace events specified by <event_string>

39._trace_buffers_per_process

Note that by default, tracing is NOT enabled. In order to enable tracing

at instance startup time, add _trace_buffers_per_process = 1

40. _trace_block_size

_trace_xxxxx (xxxxx = buffers_per_process, block_size, archive_start,

flushing, enabled, get_time_every, archive_dest etc.)

These parameters are only there for debugging purposes. Customers

or support will never have to use them.

41. _trace_archive_start

"start trace process on SGA initialization"

42. _trace_flushing

"TRWR should try to keep tracing buffers clean"

43. _trace_enabled

By default, tracing is NOT enabled. In order to enable tracing,

_trace_enabled = true

44. _trace_events

If you wish to enable tracing of waits at instance startup time, you can

either

add the line '_trace_events = "WAT,ALL"' to init.ora or execute

'alter tracing enable "WAT,ALL"' in a sqldba session.

If you wish to limit tracing to specific events, you can use the

the following syntax:

alter tracing enable "WAT,<id>,<id>..."

where "id" is either a specific event number, or an event range

(event number 1 - event number 2).

45. _trace_archive_dest

"trace archival destination"

46. _trace_file_size

"trace file size"

default is 10000 blocks

47. _trace_write_batch_size

"trace write batch size"

default is 32

48. _rollback_segment_initial

"starting undo segment number"

Default is 1. DO NOT SPECIFY 0 AS THAT HAPPENS TO BE THE SYSTEM ROLLBACK

49. _rollback_segment_count

"number of undo segments"

default is 0

50. _offline_rollback_segments

If a rollback segment is not accessible because the file it is in

is offline or corrupted, one can force the system to come up without

the rollback segment by specifying the rollback segment in init.ora

paramater '_offline_rollback_segments'. The system will come up by

estimating the current system commit time since it cannot access

transaction tble in the rollback segment. The system commit number

is a conservative guess based on current time, the database creation

time and the assumed transaction rate of 8000 tps. ONE MUST MAKE

SURE THAT THE SYSTEM TIME IS SET CORRECTLY WHEN FORCING THE SYSTEM UP

USING '_OFFLINE_ROLLBACK_SEGENTS'. A trace is written with information

about the estimated system commit number.

51. _corrupted_rollback_segments

Mark a rollback segment as corrupted.

52. _label_tag_cache_size

/* hidden size of the SGA label tag comparison cache (bitcache) */

"number of tags in the label tag comparison cache"

default is 200

53. _trace_get_time_every

"Number of trace sequence numbers per call to slgcs()"

default is 200

54. _vms_bg_priority

"VMS process priority to give to background processes"

default is 4

55. _sort_use_os_files_as_temporaries

Use O/S files rather than temp segments for sorting.

56. _log_checkpoints_to_alert

Whether checkpoint messages should be written to alert.log or not. Turned

off in benchmarks.

57. _large_memory_system :

Used in internal benchmarks. Doesn't concern us.

"Configure system to use memory and save cpu cycles, paging, etc

default is false

58. _wakeup_timeout

This is WMONs sleeptime between checks of it's queue of processes to wake.

59. _latch_wait_posting

enable posting of processes that may be waiting for a latch after a process

frees the same latch (set this parameter to a value greater than one

this parameter to a value greater than one for it to take effect).

60. _sql_connect_capability_code

allows database links from a pre-7.0.15 release to work with release 7.1.

It is necessary to set this parameter for database links from a V6 ?

